静岡県立大学 短期大学部 研究紀要第9号 1995年度

265

放射性物質封入マイクロスフェアによる膵癌局所療法の開発 (第三報)

-in vitro および in vivo における焼成マイクロスフェアの³²P固定安定性の検討

高林ふみ代¹ 原田 昇¹ 五島廉輔²

1) 静岡県立大学短期大学部看護学科

2) 静岡県立大学大学院生活健康科学研究科環境物質科学

要旨

今回は、オリフィス法によって作成された非晶質リン酸カルシウム含有アルギン酸カルシウ ムのマイクロスフェアに1250 の焼成を加え、リン酸カルシウムハイドロキシアパタイトの焼 結マイクロスフェア作成を試みた。充分な硬度の焼結体を得るには、小粒内のCa²⁺とPO4³のモ ル比が重要となるため、マイクロスフェア内におけるCa²⁺の供給源となるアルギン酸ナトリウ ム、PO4³を供給する(NH4)2HPO4について組成の再検討とともに硬化液のCa(NO3)2溶液濃度 についても再検討した。その結果、滴下液組成が(NH4)2HPO40.1M、アルギン酸ナトリウム 1.5%、硬化液は、[Ca(NO3)2]=0.4M (pH=9.0)の場合に得られる焼結小粒が<u>in vitro</u>条件下 では安定であることが示された。また、その焼結マイクロスフェアの成分をX線回折解析法、 赤外吸収スペクトル法により同定した結果、少量のCaOを含むハイドロキシアパタイトである ことが確認された。

さらに、³³P焼結マイクロスフェアを作成し、³³P固定の安定性を<u>in vivo</u> について検討した。 その結果、正常ラット腹腔内に³³P固定焼結マイクロスフェアを留置した場合、48時間経過後 の³²Pの分布は、肝臓で投与量の0.058%、腎臓・肺で0%、骨髄(両下肢大腿骨骨髄)で7.29× 10⁻⁷%であり、³³P焼結マイクロスフェアにおける³³P固定は安定であることが示された。

はじめに

第二報¹⁾ において、著者らはオリフィス法によって得られたマイクロスフェアの安定性に ついて検討した。その結果、in vivoで長時間の体内留置の際、リン固定あるいは形状の安定 性に関し問題のあることが示された。そこで今回は、これらの安定性の向上を目指してマイク ロスフェアに焼成を試みた。焼成とは、構成成分の熱分解、合成、置換などの化学反応や焼結 等の目的で鉱物類に高温処理を行うことである²⁾ が、焼成によってマイクロスフェア内で網 目状骨格的役割を担っているアルギン酸鎖を燃焼させ、アルギン酸鎖から遊離したカルシウム の移動により非晶質リン酸カルシウムのハイドロキシアパタイト化を図り、これを主成分とす る焼結マイクロスフェアが作成できると考えられた。

まず、リン固定、形状の安定性の高い焼結マイクロスフェアを得る条件を検討した。その後、 得られた条件に従って³³P焼結マイクロスフェアを作成し、正常ラット腹腔内に投与し<u>in vivo</u> で³³P固定の安定性を検討した。

高林ふみ代・原田 昇・五島 廉輔

実験1 焼成加工に適したマイクロスフェア作成条件の検討とその焼成 実験材料と実験方法

一般に、目的とする焼結体を得るためには焼成材料の組成が重要であるが、本実験において も、焼成に適するマイクロスフェアを得るに必要な原料組成比はこれまでに得られた非焼成マ イクロスフェアの原料組成比と異なることが予想された。そこで、アルギン酸ナトリウム濃度 2.0%と1.5%においてコアセルベーションを起こさない濃度の(NH₄)2HPO4を滴下ゲルとし、 それらをpH9.0に調整した濃度0.2、0.3、0.4、0.5MのCa(NO3)2溶液に滴下し、得られたマイク ロスフェアを焼成した。

焼成は、次の手順で行った。小粒を50 で24時間減圧乾燥した後、電気炉(KBF 333、(株) 光洋リンドバーグ)を用い、10 / minで1250 まで昇温、1時間保った。電気炉中で自然放 冷の後取り出した。

得られた焼結マイクロスフェアは、光学顕微鏡により直径を、Quick Coater (SC-701H、SA NYU DENSHI Co., Ltd) により表面に金蒸着後、走査型電子顕微鏡 (JSM-6300F、(株) 日本 電子) により表面形状を観察された。また、焼結マイクロスフェアに蒸留水 (1ml / 焼結マイ クロスフェア1mg) を加え、37 で48時間インキュベートし、蒸留水のpHの変化、蒸留水中に 溶出したカルシウムを原子吸光光度法 (原子吸光光度計AA-782、(株) 日本ジャーレルアッシュ) により、リンをモリプデンプルー法により測定した。

さらに、インキュベーションの結果、カルシウムとリンの溶出の少なかったサンプルについて、 KBr tablet methodにより赤外吸収スペクトル分析 (赤外分光光度計270-30、HITACHI) 及びX線回折解析法 (粉末X線回折装置JDX3500、JEOL) により成分を検索した。 実験結果

1 小粒作成条件と得られる焼結小粒の性質

Fig.1に小粒焼成過程の熱重量分析と比差熱分析の結果を示した。その結果、焼成過程は200 付近までの緩やかな重量減少と吸熱反応、400 付近までの急激な重量減少、450 付近の発 熱反応及び500 以上の重量とエネルギー収支の安定した期間からなることが示された。また、 Table 1 に作成条件と得られた焼成マイクロスフェアの特徴を示した。滴下ゲルのアルギン酸 ナトリウム濃度が2.0%のマイクロスフェアを焼成したものは、いずれも空気中に放置すると ひびが入って割れるものが多く、37 水中48時間インキュベート後の水のpHも12.0をこえてい た。一方、滴下ゲルのアルギン酸ナトリウム濃度が1.5%のマイクロスフェアを焼成したもの は、硬化液の硝酸カルシウム濃度が0.1Mの場合を除いて、空気中に放置後も形状が安定かつ3 7 水中48時間インキュベート後の水のpHの変化もない、もしくはわずかであった。また、イ ンキュベート中に水中に溶出したカルシウムとリンの濃度に関しても、滴下ゲルのアルギン酸 ナトリウム濃度が1.5%のマイクロスフェアを焼成したものでは、アルギン酸ナトリウム濃度 が2.0%のものと比べ少なかった。

2 焼結マイクロスフェアの構造と成分解析

Fig. 2 にTable 1 に示された条件で作成した焼結マイクロスフェアのうち代表的な表面形状 を示した。滴下ゲルのアルギン酸ナトリウム濃度が2.0%から得られた焼結小粒の表面 (Fig. 2, a and b)は、いずれも粗であり焼結小粒の周囲には表面から剥離したとみられる粉末が確認で きる。これと比較して、滴下ゲルのアルギン酸ナトリウム濃度が1.5%から得られた焼結マイ クロスフェアの表面 (Fig. 2, c and d)は密に整っていた。

266

Fig. 1 Burning process of microsphere. Smooth progress of burning was shown with the rise of temperature. Up is thermal gravimetry and bottom is difarential thermal analysis.

Fig. 2 Surface of sintered-microsphere. $a \sim d$ are sample 2,3,6,8 on Table 1, respectively. The surface of sintered-microsphere made from 1.5% sodium alginate gel (c and d) are smooth, as c ompared with the surface of which made from 2.0% sodium alginate gel (a and b). (Electron microscopic photograph $\times 160$)

Dropping Gel	Ca(NO ₃) ₂	Diameter of sintered- microsph ere	Rinsing water after incubation			Sample		
$(NH_4)_2HPO_4$ Sodium Alginate	(pH = 9.0)		рН	P*	Ca*	No		
0.1M 2.0%	0.1M 0.2M 0.3M 0.4M	400 ~ 500 (μm)	2.2 12.1 12.1 12.0	0.96×10^{-3} 3.83×10^{-3} 0.72×10^{-3} 4.78×10^{-4}	0.017 0.014 0.025 0.074	1 2 3 4		
0.2M 1.5%	0.1M 0.2M 0.3M 0.4M 0.5M	# 400 ~ 500 (µm)	7.6 7.2 6.5 6.7	- 3.64 × 10 ⁴ 3.64 × 10 ⁴ 3.64 × 10 ⁴ 4.86 × 10 ⁴	0.011 0.007 0.002 0.004	- 5 6 7 8		
0.5M 1.0%	0.5M	#	-	-	-	-		

Table 1 Dropping Condition and Property of sintered-microsphere

* : mg / ml of H_2O

: microspheres were not formed

インキュベーション時安定性の高かったサンプル8の赤外吸収スペクトル法及び、X線回折 解析法による成分分析の結果、焼結マイクロスフェアの主成分はハイドロキシアパタイトであ りCaOをわずかに含んでいることが示された。

実験2³²P焼結マイクロスフェアの作成と³²P固定率の測定

実験材料と実験方法

³²Pは、PHOSPHORUS-32 (37Bq H₃³²PO₄、日本アイソトープ協会)を用いた。滴下ゲルおよび硬化溶液は、実験1で得られた条件により作成した。滴下ゲルは [(NH₄)₂HPO₄] = 0.2M の1.5%アルギン酸ナトリウム溶液とし、硬化液は[Ca(NO₃)₂] = 0.4M (pH9.0) に調整したものを用いた。

滴下ゲル中への³²P添加は、第2報に従った。0.01Nアンモニア水を H₃³²PO₄に加え (NH₄)₂ H³²PO₄化したものの一部を蒸留水に溶解させ、これにリン酸1水素2アンモニウム、アルギン 酸ナトリウムを添加し、最終的に400 µ Ci / mlの滴下ゲルとした。この滴下ゲル5mlを100mlの 硬化溶液に33G針を用い滴下し³²Pマイクロスフェアを得た。そして、焼成を行い³²P焼結マイク ロスフェアを得た。

得られた³²P焼結マイクロスフェアの数と硬化溶液の 線量を液体シンチレーションカウン ター (SLC-3100、Aloka) で測定し、1粒当たりの平均 線量と固定率を求めた。 実験結果

Table 2は、滴下マイクロスフェアを取り出した後の硬化溶液、 ³³P焼結マイクロスフェア1 粒平均及び、全³³P焼結マイクロスフェアの 線量を示したものである。 ³²Pのマイクロスフェ ア中への固定率は約50%であり、dpm数から換算するとおよそ622µCiが固定されていた。

実験 3 ³²P焼結マイクロスフェアの正常ラット腹腔内投与時における安定性の検討 実験材料と実験方法

実験2で作成した³²P焼結マイクロスフェアを、ペントバルビタール40mg/kg body weight i p麻酔下ラット(6週令ウィスター系雄性、日本SLC)腹腔内投与し閉腹後、1時間(5匹)、6時 間(5匹)、24時間(5匹)、48時間(6匹)に肝臓、腎臓、肺、大腿骨骨髄を摘出し、 線量を 液体シンチレーションカウンター(SLC-3100、Aloka)で測定した。

実験結果

測定結果をTable 3 に示した。全体に、³²Pの漏出はマイクロスフェアを焼結しなかった第2 報の場合と比較して、著しく改善された。投与量に対する臓器ごとの線量の割合でも、最も大 きい肝臓で48時間後に0.058%であった。また、一定の上昇傾向も示されなかった。

	disintegration per minute			
^{32}P leaked into Ca(NO ₃) ₂ solution	1204583000 / 100 ml of solution (A)			
³² P fixed in microsphere	1499736.5 ± 220459.7 / one microsphere 1244781295 / total (830 microspheres) (B)			
Rate of ³² P fixed in microsphere				
(B ∕ A + B)	50.8 %			

Table 2 Rate of ³²P fixed in microsphere

group (n: rat)	1 hour (5)	6 hour (5)	24 hour (5)	48 hour (6)
³² Padministered *	21.0	21.4	21.9	21.2
liver	0.069 ± 0.050	0.179±0.157	0.052 ± 0.035	0.166 ± 0.148
	(0.022%) * *	(0.05%)	(0.0146%)	(0.058%)
kidney	0.073 ± 0.076	0.053 ± 0.089	0.027 ± 0.036	-0.018 ± 0.052
	(3.74 × 10 ⁻³ %)	(2.68 × 10 ⁻³ %)	(1.78 × 10 ⁻³ %)	(0%)
lung	0.146 ± 0.183	0.277 ± 0.249	-0.009 ± 0.055	-0.009 ± 0.031
	(4.23 × 10 ⁻³ %)	(7.5 × 10 ⁻³ %)	(0%)	(0%)
born marrow	0.785 ± 0.188	1.343 ± 0.822	0.550 ± 0.361	0.622 ± 0.416
	(9.00 × 10 ⁻⁷ %) #	(1.57 × 10 ⁻ %) #	(5.23 × 10 ⁻⁷ %) #	(7.29 × 10 ⁻⁷ %) #

Table 3 Time course change of $^{\rm 32}{\rm P}$ in organ after hot sintered-microsphere administration (dpm / mg of organ sample)

* : dpm / mg of body weight

** : (dpm of whole organ / dpm all administered) × 100

: (dpm of femur born marrow x 2 / dpm all administered) x 100

考察

ハイドロキシアパタイトはすでに、整形外科や歯科領域で生体内適用が実用化されている素 材であり、様々な報告がある。³⁻⁷今回の実験では、水溶液反応を利用して得られた非晶質リ ン酸カルシウムを高温で焼結させることを試みたが、通常ハイドロキシアパタイトを空気中で 加熱すると1000 付近から少しずつOH⁻が脱離し、1300 前後からCa₁₀ (PO₄)₆ (OH)₂ 3Ca₃ (P O₄)₂ + CaO + H₂O の分解反応が起こる。したがって、分解を招かずに確実にハイドロキシア パタイト焼結体を得るには1300 以下の高温で焼成を行う必要があり、本研究では焼成温度を 1250 とした²。今回の焼成では、Fig. 1 の熱重量分析、比差熱分析より、200 付近までは 非晶質リン酸カルシウムCa₃ (PO₄)₂・nH₂Oの結晶間水分の蒸発、400 ~ 500 にかけてアルギ ン酸炭素鎖の熱分解、600 以上でのアルギン酸鎖から開放されたCa²⁺の移動と焼結の完成へ と順調に移行していることが示された。

Table 1 において、アルギン酸ナトリウム2.0%滴下ゲルから得られた焼結マイクロスフェア でインキュベート水のアルカリ化やリン、カルシウムの溶出、さらには焼結マイクロスフェア の空気中放置後のひび割れがみられたのは、焼成時アルギン酸鎖の焼失にともなって生じたフ リーのCa²⁺が、存在するPO4³に対し過多であったため、大量の酸化カルシウムCaOを生成し、 これが吸湿しCaO+H2O Ca(OH)2により水酸化カルシウムとなりハイドロキシアパタイト構 造を崩壊させたことによると考えられた。マイクロスフェア中のCa²⁺の主な供給源となるアル ギン酸の濃度を減じ、(NH4)2HPO4濃度を上昇させることによって、このような変化が減少し ていることからも上記は支持される。

今回得られた焼結マイクロスフェアは少量のCaOを含むハイドロキシアパタイトであること が示されたが、本法ではCa/Pモル比がハイドロキシアパタイトの化学量論量の1.67になるよ うマイクロスフェア作成時調整するとカルシウム不足のハイドロキシアパタイトが形成される ことが確かめられており、今回得られた焼結小粒の成分構成は、本法によって得られるハイド 放射性物質封入マイクロスフェアによる膵癌局所療法の開発 (第三報) -in vitroおよびin vivoにおける焼成マイクロスフェアの[®]P固定安定性の検討

271

ロキシアパタイトとしてはほぼ理想的であると判断できた。

³²P固定率は焼結マイクロスフェアにおいても約50%を示し、焼結工程によるリンの新たな ロスは考慮しなくてもよいことが示された。また、予備実験で滴下ゲル中の³²P濃度を変化さ せても焼結マイクロスフェアの³²P固定率の変化がほとんどみられないことを確認しており、 滴下ゲルの³²P添加量を多くすることで焼結マイクロスフェアの 線量が調節可能であるとい えた。

正常ラットの腹腔内への³²P焼結マイクロスフェア投与では、脱血の行われない状態の臓器 をサンプルとして用いているので正確には臓器への移行とは異なるが、³²Pの漏出は反映され ていると考えられ、³²Pの移行は第2報で示された焼成加工をしないマイクロスフェアの場合 と比較して著しく改善されていた。このことより、³²P焼結マイクロスフェアの³²P固定は、腹 腔内で少なくとも48時間までは安定した状態を保っていると考えられた。今後は、ハムスター 皮下移植膵癌内へ³³P焼結マイクロスフェアを直接注入し、³²Pの半減期である14.3days以上留置 し、³²Pの臓器への移行等を検討する方針である。

文献

- 高林ふみ代、原田 昇:放射性物質封入マイクロスフェアによる膵癌局所療法の開発(第 二報) - in vitro 及びin vivo における³²P固定の安定性の検討、静岡県立大学短期大学部 紀要 8:121-126,1994
- 2) 牧島亮男、青木秀希:セラミックサイエンスシリーズ7、バイオセラミックス、技報堂出版、1984
- 3) M. Jarcho, R.L.Salsbury, M.B. Thomas, R.H. Doremus: Synthesis and fabrication of -tric alcium phosphate (whitlockite) ceramics for potencial prosthetic applications. J. Mater Sci. 14: 142-150, 1979
- 4) G. De With, H.J.A. Van Dick, N.Hattu, K. Prijs: Preparation, microstructure and mechani cal properties of dense polycrystalline hydroxy apatite. J.Mater Sci. 16: 1592-1598, 1981
- 5) M. Akao, H. Aoki, K. Kato, A. Sato: Dense polycrystalline -tricalcium phosphate for prosth etic applications. J.Mater Sci. 167343-346, 1982
- 6) 糸数万正、松永隆信、宗宮広尚、丹羽剛雄:抗生剤含浸ハイドロキシアパタイトを用いた 骨髄炎の治療法、Orthopaedics 8(3):81-87、1995
- 7) 西村生哉、勇田敏夫、松原良洋:生体活性無機材料被膜による埋め込み用医用高分子の表 面改質、精密工学会誌 61:576-580、1995
- 8)原田 昇、高林ふみ代:放射性物質封入マイクロスフェアによる膵癌局所療法の開発ー非 放射性物質封入マイクロスフェアの試作(第一報)、静岡県立大学短期大学部紀要 7:11 9-131,1993
- 9)原田 昇、土屋良一、山口孝、杉本綱之:膵癌の集学的治療屠蘇の成績 膵癌診療の最前 線、261-270、医学図書出版、1988
- Brayko CM and Doll DC: Squamous cell cacinoma of the pancreas associated with hypercal cemia. Gasteroenterology 83: 1297-1299,1982
- 11) Shipley WU, Wood WC, Tepper JE, et al: Intraoperative electron beam irradiation for patie nts with unresectable pancreatic carcinoma. Ann. Surg. 200: 289-296,198412) Roldan G, G

underson L, Nagomey D, et al: External beam vs. intraoperative and external beam irradiatio n for locally advanced pancreatic CA. Cancer 61: 1110-1116, 1988

- 13) Hagiwara A, Takahashi T, Ueda T, et al: Activated carbon particles as anti-cancer drug carri er into regional lymphonodes. Anti-Cancer Drug Design 1: 313-321, 198714) Hagiwara A, Takahashi T, Ueda T, et al: Activated carbon particles as anticancer drug carrier into region al lymphonodes. Anti-cancer Drug Design 1:312-313,1987
- Weinstein JN: Liposomes as drug carriers in cancer therapy. Cancer Treat Rep 68:127-135, 1984
- 16) NakhgevanyKB, Mobini J, Bassett JM and Miller E: Nonabsorbable radioactive material in t h treatment of carcinomas by local injections. Cancer 61: 931-940, 1988
- 17) Mohiuddin M, Rosato F, Barbot D, et al: Long-term results of combined modality treatment with I-125 implantation for carcinoma of the pancreas. Int J Radiation Oncology Biol Phc s 23: 305-311, 1992